



# The futures of Europe's freshwaters

### Juha Kämäri

Hungarian Youth Parliament
3 October 2008





#### SCENARIO ANALYSIS



To develop a set of alternative and plausible scenarios of Europe's freshwater futures up to 2050

NOT prediction → Possible future





## Scenario development





# Scenarios constructed together







# Different issues in different parts of Europe





#### **MEDITERRANIAN REGION**

- · water stress
- · land use change
- water use, irrigation
- population trends, immigration change in agricultural policy

#### **LOWER DANUBE REGION**

- economic transition
- water pollution issues
- · change in agriculture and land-use
- flood and drought management

#### **BALTIC REGION**

- · transition of agriculture
- privatization of water supply systems
- mixed trends in water consumption both municipal and industry
- probably increasing GDP and the changes in the life style
- HELCOM future

#### **BLACK SEA REGION**

- · change in agriculture, unknown future
- salinization of the irrigated fields
- decapitalization of hydraulic structures
- unknown future for the ownership and operation of water supply and sewage treatment plants
- consumption of water by heavy industry
- negative population trends





### Modelling tool: WaterGAP 2

(Water - Global Assessment and Prognosis)







# Factors affecting water use and water availability





#### Drivers - climate









#### Drivers - climate









## Change in water availability

Climate change leads to different results for summer and winter









## Change in water availability

Climate change leads to different results for summer and winter







#### Conclusions climate change



#### Change in Water availability up to 2030

- Annual average changes drier in the south; not big change over rest of Europe
- Larger seasonal differences
- Cause: Warmer temperatures (higher evapotransp.) + Trend in precipitation
- · Small difference between scenarios





## Example - Annual Total Water Withdrawals (2000 - 2030)







#### Water for Food: Indicators



Food 2: farmers at risk

Food 3: biomass production for energy







## Water for Nature: Indicators



Nature 2: environmental flows





### Water for People: Indicators

People 1: change domestic water availability

 People 2: tourist domestic water stress

People 3: flood risk











### Water for Industry: Indicators

- Industry 1: intake restrictions due to water quantity
- Industry 2: risk for reduced cooling water capacity





